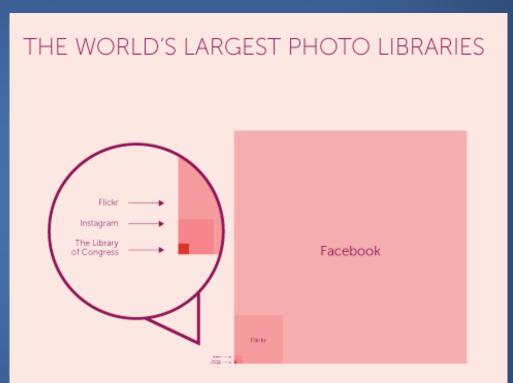
Managing Capacity and Performance in a Large Scale Production Environment

Presenter: Goranka Bjedov, Capacity Engineer, Facebook

Outline

- **1** Problem Description
- 2 Objectives/Goals
- 3 Start Simple/Small
- 4 Current System
- **5** What is Next?

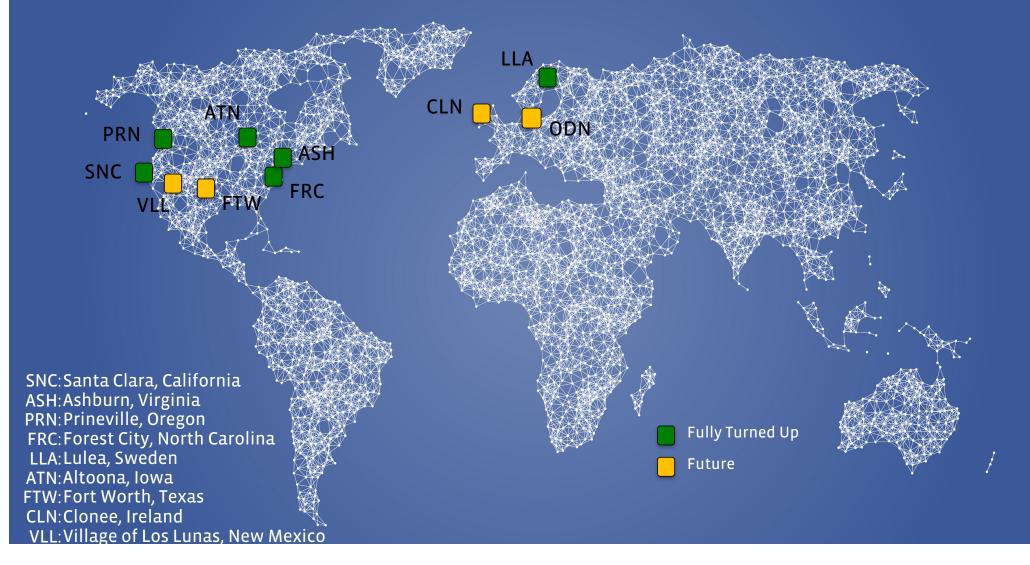

Problem Description There is more to the story than meets the eye

- Facebook (> 1.7B MAU)
- Whatsapp (> 1B MAU)
- Messenger (> 1B MAU)
- Instagram (> 0.5B MAU)
- Oculus
- Internet.org

Photos (and Videos)

- User growth not reaching saturation
- Implicit contract to store content forever

How do you keep photos for 100 years?



What we do in 30 minutes...

- 3.8 trillion cache operations
- 108 billion queries run on MySQL
- 5 billion real-time messages sent
- 160 million newsfeed stories created
- 10 billion profile pictures served
- 50 million photos served
- 200 billion objects checked
- 300 million objects blocked
- 10 million photos uploaded

- 105TB of data is scanned via Hive
- 10TB of logs loaded into Hadoop
- 225 TB network egress

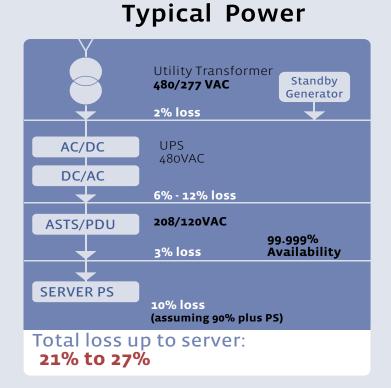
Facebook Private Cloud

2017 Servers (opencompute.org)

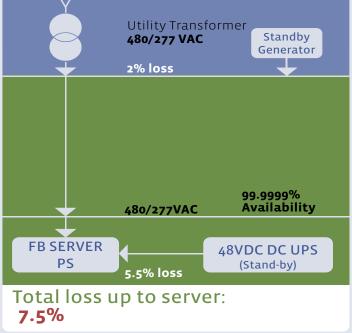
Standard	l	III	IV	V	VI	VII Cold
Systems	Web	Database	Hadoop	Haystack	Feed	Storage
CPU	High	High	High	Low	High	High
	Broadwell	2 x Broadwell	2 x Broadwell	1 x Avoton	2 x Broadwell	2 x Haswell
	(16c)	(14c)	(14c)	(8c)	(14c)	(12c)
	1.8 GHz	2.4 GHz	2.4 GHz	2.7 GHz	2.4GHz	2.5 GHz
Memory	Low	High	Medium	Low	High	Medium
	32GB	256GB	128GB	32GB	256GB	128GB
Disk	Low 256 GB Flash	High IOP 2 x 3.2TB Flash 128 GB mSata		High 30 x 8TB NL SAS	Medium 2TB SAS (1.6 TB FLASH optional)	Very High 240 X 8TB 16 active disks
Number Servers/ Rack	120	30	18	9	30	6

2015 Servers (opencompute.org)

Standard	l	III	IV	V	VI	VII Cold
Systems	Web	Database	Hadoop	Haystack	Feed	Storage
CPU	High	High	High	Low	High	High
	2 x Haswell	2 x Haswell	2 x Haswell	1 x Avoton	2 x Haswell	2 x Haswell
	(12c)	(12c)	(12c)	(8c)	(12c)	(12c)
	2.5 GHz	2.5 GHz	2.5 GHz	2.7 GHz	2.5GHz	2.5 GHz
Memory	Low	High	Medium	Low	High	Medium
	32GB	256GB	128GB	32GB	256GB	128GB
Disk	Low 500GB SATA	High IOP 2 x 3.2TB Flash 128 GB mSata	High 15 x 4TB (or 6TB) NL SAS	High 30 x 4TB (or 6 TB) NL SAS	Medium 2TB SAS (1.8 TB FLASH optional)	Very High 240 X 4TB 16 active disks
Number Servers/ Rack	30	30	18	9	30	6


Server Generations

Type I Web Servers	2007	2008	2009	2010	2011	2012	2014	2015	2017
Rack Compo- sition	L5420 (VSS) Fully- buffered Dimms	L5420 (SC)	L5520 (NHM)	L5639 (WSM)	X5650 (XWSM)	E5-2670 (SNB)	E5-2680 (IVB)	Haswell	Broadwell
Cores / Speed	8 real cores 2.50 GHz	8 real cores 2.50 GHz	16 logical CPUs 2.27 GHz	24 logical CPUs 2.13 GHz	24 logical CPUs 2.67 GHz	32 logical CPUs 2.67 GHz	40 logical CPUs 2.8 GHz	48 logical CPUs 2.5 GHz	32 logical CPUs 1.8 GHz
RCUs	0.4	0.6	1	1.4	1.75	2.42	Х	х	Х


Objectives/Goals Not getting any simpler

- Low latency for users
- Launch things quickly
 - Succeed or fail quickly
 - Don't worry about efficiency
- Conserve Resources
 - Power
 - Money
 - Computers (RAM, CPU)
 - Network
 - Developer Time

Power Efficiency

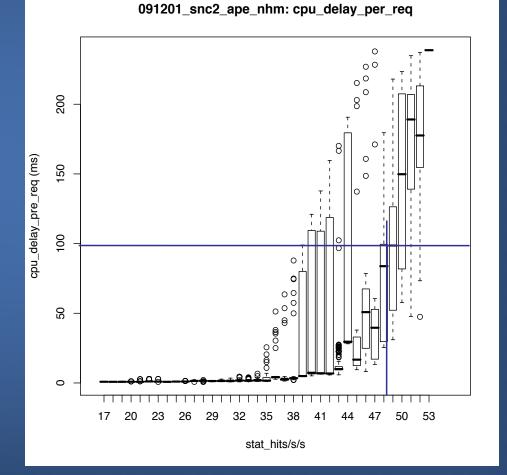
Prineville Power

My Goals Finally something simple

- Want (only) right things running on (only) right gear
- Want things to run efficiently
- Want to know if something is broken
- Want to know if something is about to break
- Want to know how (and why) things are growing (or not)
- Want to know who to blame... ☺

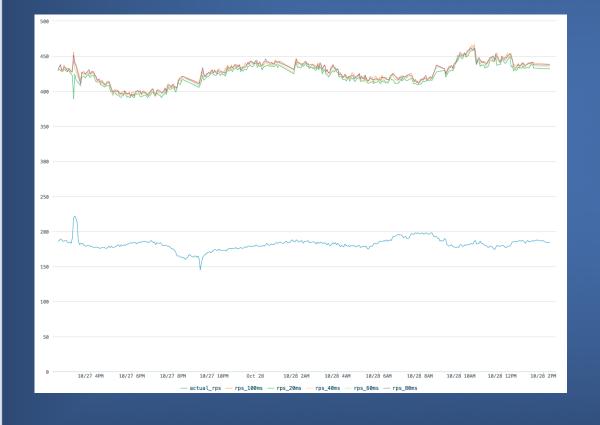
Approach Start small

- Monitoring Daemon (dynolog)
 - -Runs on all servers
 - Collects system/kernel data in one second granularity
 - -Slim high-throughput aggregator and streaming Thrift service
 - -Exports data to scribe, hadoop, ods, etc.
- What Data Does it Collect
 - -Default: CPU, RAM, Network, IO, disk stats...
 - -Customized: Requests + App performance


Dyno	Dyno									
🔍 🔍 📄 Scr	reen Shot 2016-11-04 at 2.48.38 PM ~									
	🖉 🗸 🛅 💼 🔍 Search									
[\$ dynohelp dyno <cmd> <host> <port></port></host></cmd>										
examples: dyno counters dyno systeminfo dyno values dyno events dyno all	query dyno at localhost and output fb303 counters system information fb303 values event log - dynolog debugging info export all of the above									
dyno utilization	get cpu utilization for the past 5 second									
dyno a	use first letter shorthand for all or (c,s,v,e)									
dyno a webi2222.snc2 dyno a webi2222.snc2 1777	all from remote host all from remote host with port									

Application level (Web)

duration_avg_ms: 132 duration_cpu_avg_ms: 8 duration_ms_p25: 4 duration_ms_p50: 8 duration_ms_p75: 13 duration_ms_p95: 18 duration_ms_p99: 18 dynolog_uptime_min: 2942 ego_renders_per_hit: 0 ego_renders_per_sec: 0 instructions_hit_percent_of_busy: 8 instructions_per_cpu_count: 252416 instructions_per_cpu_sec: 937187000 instructions_per_cpu_sec_p25: 263233135 instructions_per_cpu_sec_p50: 426773721 instructions_per_cpu_sec_p75: 639600511 instructions_per_cpu_sec_p95: 1056292963 instructions_per_kcycle: 621


Measuring web capacity

- Hit duration increases with hit rate
- Defined 100 milliseconds of contention induced latency as 100% utilization—any more latency is easily perceived by the user
- The increase in duration comes from the process waiting in the kernel run queue.
- The NHM server to the right tops out at 48 hits/s

Custom Monitoring

More info: https://www.facebook.com/note.php?note_id=203367363919

- InstantDyno:
 - Listen to dyno thrift interface
 - Make correlations between pairs of metrics
 - Adjust load on loadbalancers
- Live loadtests
- 24/7
- Every day, every second

What Questions Can I Answer

- How is a group of servers performing?

 Need to know which servers form a "group"
 Need to process/organize/present that data
 Our answer: Overwatch
- How is the code on those servers performing? —Is the code uniform?
 - -CPU (instructions, cycles, etc.)
 - -RAM
 - -Disk, network, TOR, etc.
 - -Our answer: Perf Doctor

Overwatch - Comparison across services

FOVERWATCH Comparison Utilization Projection Callgraph Alerts Setting CEA Owner

FBUrl for the Latest	Date	Service	Top Tier	Count[?]	RCU [?]	CPU Util(?) (p5 - p25 - p50 - p75 - p95)	PerfDoctor[?]	Efficiency
FBUrl for the Picked	Date	web	Ibpool-slb.www	-	_		<u></u>	Show
Date	7/10/2016	multifeed_aggregator2.prod	multifeed.aggregator2.prod	-				Show
		unicorn	unicorn.index	-	_		data	Show
ick the services you tep 1: Set filter to na		tao	tao.wcfollow	-			R	Show
Prefix		memcache	twmemcache	-	-		Rx	Show
	Select products 👻	zippydb	zippydb	-			Rx	Show
tep 2: Pick the servi Service		memcache	twmemcache.production	_	-		R	Show
Service	Select services -	multifeed_leaf	multifeed.leaf4.prod	-			Rx	Show
Web Related Only		scribeh	sys.production.scribeh	-			Rx	Show
Show Top (by counts)	20 🗸	twasync	sys.production.twasync	-			R	Show
	10	tao	tao.wildcard	_			Ŗ	Show
host count less than		object20.prod	multifeed.leaf4_object20.prod	-	_		R	Show
Metrics	Count, RCU, CPU Util	dragon_hosts	dragon_hosts	-			R	Show
		sigma	si_sigma	-			R	Show
	Submit	traffic	slb	_	_		Rx	Show
Legend		shiv	tlb	-			Rx	Show
Metric Bar	Black line is the median.	sigrid predictor	sigrid.predictor	-	-		R	Show
	Darker middle block is 25% - 75%.	laser	coefficient_db	-			Rx	Show
	Lighter outer block is 5% - 95%.	drake leaf	drake.leaf	-	-		Ŗ	Show
	Service pct(50) >=	up2x.read	up2x.read.parent		1		Rx	Show

Overwatch - Alerting

						Screen Shot 2016-11-04	4 at 3.26.42 I						
	€	<u>Ô</u>							z 🗹 (ð) (é)	Q Search		
f	VERWATC	H Comp	arison Utiliz	zation Pro	jection Ca	allgraph Servers A	lerts Setti	ng CEA Own	er	÷.	i A 12 (Search	
_													
CE	CEA Owner(s) is any of Goranka Bjedov × Click to add a filter												
	Alert ID 🌲	Task ID 🌲	Alert Type 🌻	Product 🖨	Service 🜲	Tier ≑	Region 🌻	CEA Owner(s)	Occurrences ≑	First Seen 🌲	Last Seen 🌻	Status 🜲	
/	#7		Hot Cpu	sandcastle	sandcastle	sandcastle	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#8		Hot Cpu	sandcastle	sandcastle	sys.production.sandcastle	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
	#11	ø	Hot Cpu	sandcastle	sandcastle	sandcastle.tupperware	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#12		Hot Cpu	sandcastle	fbcode-disk	sandcastle.fbcode-disk	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#20		Hot Cpu	sandcastle	shared	sandcastle.shared	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#23		Hot Cpu	sandcastle	osmeta- linux	sandcastle.osmeta-linux	ASH	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
	#32		Hot Cpu	sandcastle	sandcastle	sandcastle	ATN	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#37		Hot Cpu	sandcastle	sandcastle	sys.production.sandcastle	ATN	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
/	#38		Hot Cpu	sandcastle	sandcastle	sandcastle.tupperware	ATN	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
	#39		Hot Cpu	sandcastle	android	sandcastle.android	ATN	Goranka Bjedov	2	2016-05-18	2016-05-18	Whitelisted	
	#42		Hot Cou	sandcastle	fbcode-disk	sandcastle fbcode-disk	ATN	Goranka Biedov	2	2016-05-18	2016-05-18	Whitelisted	

Dyno and Perf Doctor

- Perf Doctor consumes nearly all of Dyno's system counters
- Raw time-series values are used to determine:
 - Does a tier have performance issues?
 - What is possible remediation?
- Breakdown done by machine architecture
- Most counters are also plotted

Dyno system counters in ODS

CPU

- **CPU** instructions
- CPU cycles
- Instructions-per-cycle
- CPU frequency
- HHVM foreground inst
- CPU core count
- Turbo status

Memory

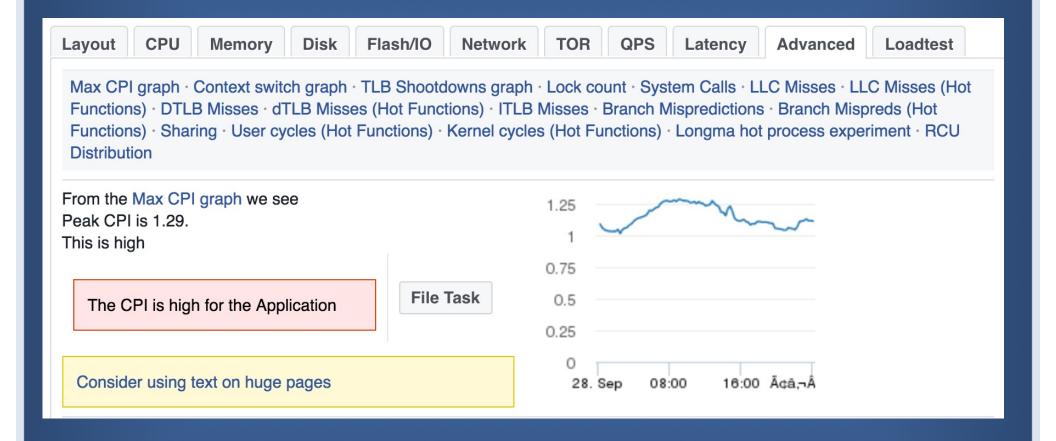
Memory bandwidth Local memory bw Remote memory bw Memory bw utilization

Kernel

Interrupts etho per sec Interrupts tlbshootdowns CPU busy Page faults Context switches

Storage

- Disk read/write iops
- Flash/disk rd/wr bytes
- Flash/disk rd/wr ms
- Flash/disk rd/wr ios


Network

Tx/Rx packets Tx/Rx bytes Tx/Rx errors Tx/Rx drops

PerfDoctor - Is A Service Healthy?

PERFDOCTOR	Runs				🕂 🔒 🤌 🖓 👬 Search	for people, d	ocuments, tools	Q
Run ID	Submit							
Run Record	id	status	run_time	user	Host / Tier / Entity	Service	Description	
Run Details	101003	SUCCEEDED	2016-07-11 05:39:51	overwatch	slb	traffic		
ssues and Remedia	tions found by P	erfDoctor Generate FBUrl						
Recommended Issues	/Remediations	▼ Detailed PerfDoctor	Analysis			▼ PerfDocto	or Tests	
ssues Remediation	IS	Layout CPU Me	emory Disk Flash/IO Network	TOR QPS Latency	Advanced Loadtest	Layout	OS Versions	
				see where the older	versions are in this heatmap \cdot here	CPU	High CPU Util	
▼ Layout			ne older versions are in this heatmap we			CPU	Low CPU Util	
Older OS versions		See OS types in the tier				CPU	CPU Region Util	
Older OS versions		Version 4.00.09 31 Version 4.00.08 4				CPU	Capped servers	
▼ CPU		Version 4.00.07 211 Version 4.00.06 276				CPU	Unbalanced servers	
		Version 4.00.05 104 Version 4.00.04 101				CPU	Kernel time	
The servers are un regions.	balanced across	Version 4.00.10 119 Version 4.00.11 9				Memory	Memory BW GB/s	
Togiono.		Version 3.10.21 351 Version 3.10.20 2498				Memory	Memory BW %	
CPU utilization is n machines	ot even across	Version 3.10.16 9 2858 Severs need to b	be upgraded to Linux version 4			Memory	Memory Region Bandwidth	
muoninoo						Memory	Low Free Memory	
▼ Memory		Older OS versions	File Task			Memory	NUMA effect	•
Memory bandwidth	utilization is	Consider upgrading	OS to latest version			Memory	High Local Memory Latency	
unbalanced across		Check out the System	types across the tier here			Memory	High Remote Memory Latency	

PerfDoctor - Calculating CPI

PerfDoctor - Calculating DTLB miss rate

From the dTLB Misses (Hot Functions) we see The hottest functions causing dTLB misses are

free

15.71%

std::_MakeUniq<facebook::unicorn::internal_layeredindex::LayeredIndexIterator<facebook::unicorn::int 12.23%

dTLB miss rate is high on hot functions

File Task

LongMa Deep Dive: dTLB Misses (Hot Functions)

Check the hot functions for high dTLB misses and see if huge pages can be used

PerfDoctor - Calculating LLC miss rate

From the LLC Misses we see The Last Level Cache miss rate is 0.65 This is acceptable		LongMa Deep Dive: LLC Misses
From the LLC Misses (Hot Functions) we a The hottest functions causing last level ca copy_page_range page_remove_rmap		
copy_page_rep	4.33%	LongMa Deep Dive: LLC Misses (Hot Functions)
Check the hot functions for high LLC mis memory behavior	sses and optimize	

Deep Dive - Longma

- A tool to simplify the collection of performance data, store it and present it in accessible way
- Can use INTEL's EMON to get low-level hardware counters
- Interprets hardware counters and presents the information

EMON Counters

4	(EDP 1.5a) name (sample #1 - #32382) all events/metrics are normalized	aggregated	95th percentil	43	metric_NUMA %_Reads satisfied by local DRAM (LLC prefetches exclude	43.7154	46.9211
5	metric_CPU operating frequency (in GHz)	2.1996	2.2000	44	metric_NUMA %_Reads satisfied by remote DRAM (LLC prefetches exclu	45.9279	49.7454
6	metric_CPU utilization %	43.6180	76.0868	45	metric_NUMA %_Reads satisfied by remote caches (Hitm+HitF; LLC pref	10.3566	17.2653
7	metric_CPU utilization% in kernel mode	4.1249	5.9215	46	metric_NUMA %_Reads that are code misses and satisfied by remote ca	1.0181	2.1003
8	metric_CPI	1.3206	1.5279	47	metric_NUMA %_Reads that are code misses and satisfied by remote m	1.8602	3.8883
9	metric_kernel_CPI	3.0300	3.5594	48	metric_QPI speed - GT/s	7.9949	7.9996
10	metric_% cycles uops retired	28.9780	32.9625	49	metric_QPI Data transmit BW (MB/sec) (only data)	2,973.5779	4,601.8066
11	metric_branch mispredict ratio	0.0324	0.0365	50	metric_QPI total transmit BW (MB/sec) (includes control)	4,464.1978	6,935.6200
12	metric_loads per instr	0.2685	0.2758	51	metric_QPI Transmit utilization_% (includes control)	6.9798	9.2192
13	metric_stores per instr	0.1519	0.1694	52	metric_QPI % cycles transmit link is half-width (L0p)	0.0000	0.0000
14	metric_locks retired per instr	0.0009	0.0013	53	metric_QPI % cycles receive link is half-width (L0p)	0.0000	0.0000
15	metric_uncacheable reads per instr	0.0000	0.0000	54	metric_QPI % cycles receive link is in LOs sleep state	0.0000	0.0000
16	metric_streaming stores (full line) per instr	0.0000	0.0000	55	metric_QPI % cycles transmit link is in LOs sleep state	0.0000	0.0000
17	metric_streaming stores (partial line) per instr	0.0000	0.0000	56	metric_HA - Reads vs. all requests	0.7200	0.7497
18	metric_L1D MPI (includes data+rfo w/ prefetches)	0.0199	0.0300	57	metric_HA - Writes vs. all requests	0.2800	0.3083
19	metric_L1D demand data read hits per instr	0.2546	0.2605	58	metric_DDR data rate (MT/sec)	1,332.6932	1,333.5669
20	metric_L1-I code read misses (w/ prefetches) per instr	0.0086	0.0102	59	metric_memory bandwidth read (MB/sec)	4,334.6072	6,796.0721
21	metric_L2 demand data read hits per instr	0.0043	0.0057	60	metric_memory bandwidth write (MB/sec)	1,869.1081	2,910.5233
22	metric_L2 MPI (includes code+data+rfo w/ prefetches)	0.0210	0.0503	61	metric_memory bandwidth total (MB/sec)	6,203.7153	9,677.4048
23	metric_L2 demand data read MPI	0.0045	0.0103	62	metric_IO_bandwidth_disk_or_network_writes (MB/sec)	34.6664	57.8164
24	metric_L2 demand code MPI	0.0032	0.0041	63	metric_IO_bandwidth_disk_or_network_reads (MB/sec)	34.6204	59.0679
25	metric_L2 Any local request that HITM in a sibling core (per instr)	0.0001	0.0001	64	metric_IO_number of partial PCI writes per sec	0.4792	0.0000
26	metric_L2 read miss latency (in core clocks) - BROKEN	78.4953	110.9336	65	metric_IO_number of partial PCI reads per sec	0.1846	0.0000
27	metric_LLC MPI (includes code+data+rfo w/ prefetches)	0.0029	0.0041	66	metric_IO_write cache miss(disk/network reads) bandwidth (MB/sec)	32.3574	55.7779
28	metric_LLC data read MPI (includes prefetches)	0.0020	0.0027	67	metric_IO_read cache miss(disk/network writes) bandwidth (MB/sec)	33.6207	56.5899
29	metric_LLC code read MPI (includes prefetches)	0.0002	0.0002	68	metric_memory reads vs. all requests	0.6987	0.7266
30	metric_LLC LLC prefetch data read MPI	0.0000	0.0000	69	metric_memory Page Misses vs. all requests	0.0837	0.1008
31	metric_LLC LLC prefetch RFO read MPI	0.0002	0.0003	70	metric_memory % Cycles where all DRAM ranks are in PPD mode	39.1766	53.6138
32	metric_LLC LLC prefetch code read MPI	0.0000	0.0000	71	metric_memory % Cycles all ranks in critical thermal throttle	0.0000	0.0000
33	metric_LLC total HITM (per instr)	0.0002	0.0002	72	metric_memory % Cycles Memory is in self refresh power mode	0.0007	0.0000
34	metric_LLC total HIT clean line forwards (per instr)	0.0001	0.0002	73	metric_power % cycles max frequency limited by thermal issues	0.0000	0.0000
35	metric_LLC writebacks per instr	0.0011	0.0015	74	metric_power % cycles max frequency limited by OS	100.0000	100.0000
36	metric_Average LLC data read (demand+prefetch) miss latency (in ns)	119.4158	122.3266	75	metric_power % cycles max frequency limited by power	0.0000	0.0000
37	metric_Average LLC data read (demand+prefetch) miss latency (in core of	262.6712	268.8380	76	metric_ItoM operations (fast strings) that reference LLC per instr	0.0003	0.0004
38	metric_ITLB MPI	0.0003	0.0004	77	metric_ItoM operations (fast strings) that miss LLC per instr	0.0002	0.0003
39	metric_ITLB large page MPI	0.0000	0.0000	78	metric_Topdown Frontend bound (%)	19.2757	26.2533
40	metric_DTLB large page load MPI	0.0002	0.0003	79	metric_Topdown Retiring (%)	20.4631	23.9712
41	metric_DTLB store MPI	0.0002	0.0003	80	metric_Topdown Bad speculation (%)	6.1023	7.3639
42	metric_DTLB store miss latency (in core clks)	55.1831	60.5893	81	metric_Topdown Backend bound (%)	54.1589	63.6967

Longma – Process Count

Find the hottest functions and get a breakdown of memory and CPU usage by process and thread.

Process Counters

Process	Thread Name	Thread ID	User Time %	User process %	User Start %	Kernel Time %	Kernel process %	Kernel Start %	Soft IRQ	Rss MB	Dirty MB	Size MB
Total	Total	0	27.69	0	0	2.45	0	0	0.43	0	0	0
leaf_main	leaf_main	3833196	14.18	100	100	0.44	100	100	0	130796	130715	156156
aggregator	aggregator	4059488	10.46	100	100	0.68	100	100	0	1227.66	1176.11	7682.04
aggregator	(PYMKAggregator-)	4061437	1.85	17.65	7.2	0.02	2.81	1.99	0	0	0	0
aggregator	(PYMKAggregator-)	4061426	1.77	16.89	3.96	0.04	5.62	1.13	0	0	0	0
aggregator	(PYMKAggregator-)	4061428	1.68	16.06	3.77	0.03	5.06	1.09	0	0	0	0
leaf_main	(PYMKLeaf-pri3-2)	3885496	1.65	11.64	3.64	0.01	2.22	0.95	0	0	0	0
leaf_main	(PYMKLeaf-pri3-1)	3885481	1.53	10.81	1.89	0.02	4.44	0.56	0	0	0	0
leaf_main	(PYMKLeaf-pri3-2)	3885470	1.42	10.02	4.01	0	1.11	1.01	0	0	0	0
leaf_main	(PYMKLeaf-pri3-1)	3885486	1.4	9.88	3.8	0.01	3.33	0.98	0	0	0	0
leaf_main	(PYMKLeaf-pri3-4)	3885472	1.4	9.85	3.43	0.01	2.22	0.91	0	0	0	0
leaf_main	(PYMKLeaf-pri3-1)	3885485	1.36	9.6	3.92	0	1.11	0.98	0	0	0	0
aggregator	(PYMKAggregator-)	4061432	1.36	13.01	4.43	0.02	2.81	1.29	0	0	0	0
leaf_main	(PYMKLeaf-pri3-1)	3885469	1.31	9.26	3.38	0.01	2.22	0.9	0	0	0	0
leaf_main	(PYMKLeaf-pri3-9)	3885477	1.29	9.12	2.85	0.01	2.22	0.78	0	0	0	0
leaf_main	(PYMKLeaf-pri3-8)	3885476	1.28	9.05	3.32	0.01	3.33	0.87	0	0	0	0
aggregator	(PYMKAggregator-)	4061427	1.15	11.02	4.21	0.02	2.81	1.22	0	0	0	0
leaf_main	(PYMKLeaf-pri3-2)	3885494	1.1	7.75	3.13	0	1.11	0.83	0	0	0	0
aggregator	(PYMKAggregator-)	4061430	1.09	10.4	5.06	0.02	2.81	1.47	0	0	0	0
leaf_main	(PYMKLeaf-pri3-2)	3885488	0.92	6.51	2.7	0	1.11	0.71	0	0	0	0
leaf_main	(PYMKLeaf-pri3-3)	3885499	0.85	6.02	3.88	0	1.11	0.99	0	0	0	0
leaf_main	(PYMKLeaf-pri3-2)	3885490	0.82	5.75	3.42	0	1.11	0.89	0	0	0	0
leaf_main	(PYMKLeaf-pri3-5)	3885473	0.59	4.13	3.11	0.01	2.22	0.81	0	0	0	0
aggregator	(PYMKAggregator-)	4061431	0.59	5.65	8.48	0.01	1.12	2.44	0	0	0	0
aggregator	(TierUpdNotify)	4059976	0.52	4.93	1.14	0.04	5.62	0.68	0	0	0	0

Other daemons

- I can still not tell if (only) the right things are running on the right hardware
- Want to be able to tell automatically why a particular (set of) machine(s) behaves differently at a certain time
- Our solution: two more daemons
 - atop daemon: take atop every X seconds, store output on a local drive
 - -Automatically analyze and correlate output
 - Strobelight: get all stacktraces every Y minutes and analyze those

